Related Questions with Solutions

Questions							
Quetion:	01						
$b^2 + c^2$	ab	ac					
ab	$c^{2} + a^{2}$	bc	=				
ca	cb	$a^2 + b^2$					
A. $4a^2b^2c^2$	1		1				
$B.8a^2b^2c^2$	1						
$C.12a^2b^2c$	2^2						
$\mathbb{D} \cdot a^2 b^2 c^2$							

Solutions

Solution: 01

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Given: $ab c^2 + a^2 bc$
ca cb $a^2 + b^2$
$ab^2 + ac^2$ ab^2 ac^2
$\Rightarrow \frac{1}{l}$ a^2b $bc^2 + a^2b$ bc^2
$\begin{vmatrix} abc \\ ca^2 \\ cb^2 \\ a^2c + b^2c \end{vmatrix}$
Applying $C_1 \Rightarrow C_1 - C_2 - C_3$
$1 0 ab^2 ac^2$
$\Rightarrow \frac{1}{l} \begin{vmatrix} -2bc^2 & bc^2 + a^2b \\ bc^2 \end{vmatrix} = bc^2$
$\begin{vmatrix} abc \\ -2b^2c & cb^2 & a^2c+b^2c \end{vmatrix}$
$abc = 0$ b^2 $c^2 = 1$
$\Rightarrow \frac{abc}{c} \begin{vmatrix} -2c^2 & c^2 + a^2 & c^2 \end{vmatrix}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Expanding along R1 ,
$\Rightarrow -b^2 \left(-2c^2a^2 - 2b^2c^2 + 2b^2c^2\right) + c^2 \left(-2c^2b^2 + 2b^2c^2 + 2b^2a^2\right)$
$\Rightarrow 2a^{2}b^{2}c^{2} + 2a^{2}b^{2}c^{2} = 4a^{2}b^{2}c^{2}$

Correct Options

Answer:01 Correct Options: A